A Win for Housing, Livability, and the Climate

California Is Starting to Reverse a Century of Policy That Has Shaped Our Cities

Cities across America have suffered from sprawl, degraded urban design, poor walkability, high housing costs, and economic injustice. Many factors contribute to these urban ills, but UCLA professor Donald Shoup makes a cogent case that parking requirements in zoning ordinances are the main culprit. Per professor Shoup, such mandates subsidize cars, thus leading to more driving and car ownership. Looking at numbers nationwide, there are eight parking spaces for every car.

A few weeks ago, Governor Gavin Newsom signed into law a bill eliminating parking mandates for residential and commercial developments located within half a mile of major transit stops. Cities in California (and elsewhere in the country) are facing a growing affordable-housing crisis. This legislation is an important win for housing and parking reform advocates, because parking requirements raise housing costs, eat up valuable land, and make communities less delightful places. This act to remove parking requirements is the first statewide effort to prioritize people and their housing needs over cars.

Starting a couple of decades ago, Santa Barbara began taking some tentative steps to reform parking mandates. Casa de las Fuentes on West Carrillo is a 42-unit, affordable rental complex, designed for downtown workers. Instead of the standard two parking spaces per unit, it innovated with just one and charged $50/month to any occupant who owns or has leased a car. Unbundling parking from condo or rental living spaces needs to be universal. Even with only one space per unit, the Casa’s covered parking is usually only half full.

Eliminating on-street parking reduces car trips, especially when accompanied by increased public transit. Copenhagen has removed 2-3 percent of its street parking each year for more than a decade with growing improvements to its economy and livability. In the past year, Oslo has removed more than 700 downtown parking places and replaced them with bike lanes, pocket parks, and sitting areas. Oslo’s ultimate goal is a total ban on cars in the city center. In Paris, the pandemic led to the mayor accelerating the plan to remove 72 percent of on-street parking and speed up the creation of more bike lanes.

California’s new parking reform law is not only helping with housing affordability and neighborhood livability but also reducing air pollution and greenhouse-gas emissions. As we move to more electric vehicles, it is still important to remove parking requirements and increase the fees charged for parking. Such changes lead to fewer vehicles being manufactured and the conserving of valuable finite resources. Moreover, fewer parking spaces mean cars are less dominant in urban design. Hopefully this California innovation will spread to other states, as often is the case when California takes the lead.

Eco-Friendly Cooling Equipment is Coming

Mechanical Cooling Needs to Use Less Energy and Avoid Dangerous Refrigerants

Heat waves are becoming more frequent, more extreme, and more widespread. Air-conditioning (AC) is ubiquitous in the U.S. (90 percent penetration), but not in Europe and many other regions where it is increasingly becoming a necessity. Outside the U.S., less than 25 percent of people in regions that merit AC have it. Consequently, the International Energy Agency expects AC energy consumption to triple worldwide by 2050.

Unfortunately, AC, in its current form, carries significant environmental costs: More demand for cooling leads to more warming of the planet. In addition, the refrigerants used in cooling condensers are 2,000-3,000 times more potent than carbon dioxide as a climate-warming agent when it leaks into the atmosphere.

Gradient Comfort, a San Francisco–based company, is tackling AC’s climate predicament — their mission is to push the industry to zero carbon emissions. Gradient has developed an innovative window cooling and heating unit that is both efficient and eco-friendly. It is a heat pump, a technology gaining in popularity for centralized heating and cooling systems because of energy efficiency, but such equipment tends to be bulky, expensive, and requires professionals to install. Gradient’s technology, however, offers a sleek, affordable, and compact alternative. 

The only Gradient model currently available (it only came on the market this summer) is a window unit. It sells for $2,000 compared to $5,000 or more for comparable units. Their saddle bracket fits on the windowsill of a single- or double-hung window and holds a sleek, attractive fan-coil unit on the inside while the evaporator heat pump is on the outside. Both components fit below the window, so that views are not obstructed. Housed with the fan coil is a quiet fan, eliminating any noise issues. The company is designing other models to fit other styles of windows, e.g., casement units. The unit is planned for do-it-yourself installation in 15 minutes with just a few basic tools. 

Gradient won the Fast Company’s 2022 World-Changing Ideas Award. The cooling component is 30 percent more efficient than traditional window units. When both heating and cooling are combined, the improved efficiency jumps to 75 percent. Another big plus is the refrigerant: Although still a hydrofluorocarbon, the fluid used by Gradient has a quarter the global warming potential of those used by other AC manufactures. They are working to improve their refrigerant even more.

The Gradient device is designed to use only the amount of energy required as it is turned up or down. It is also linked to Wi-Fi in order that it can be self-adjusted when there is heavy demand on the electric grid.

Although Gradient needs more improvements to reach its goal of zero greenhouse-gas emissions, it has taken big first steps in addressing the widespread flaws in existing systems: high cost, cumbersome installations, and unsightliness. These are important directions for widespread adoption of cooling including in less affluent areas of the world.

Impressions from a Month in France and Scotland

Climate and Resilience Issues Are Being Addressed in Impressive Ways

This summer’s heat extremes in Europe have set new temperature records, spread wildfires, and created public health issues. Fifteen thousand people died in France during the August 2003 heat wave. This summer, with even higher temperatures, no one has died in France. Big numbers have died in other southern European countries where there have not been the same kind of measures taken to protect citizens. The French government has created a comprehensive heat emergency plan as part of a larger scheme to address climate change and boost climate resilience. 

Swimming pools, bathhouses (dating back to the period before many French had bathrooms at home), and parks are open daily and with hours extending to almost midnight. Misting machines in parks, plazas, and other public spaces, often tied to fire hydrants, are set up to cool these areas and create fun places for children to play. “Heat wave kits” are sent to parents for their children and to older, at-risk people.

There is also a push to ban cars in French cities and make public transportation free during temperature spikes, but this has not turned into official policy yet.

The heat island effect makes French cities as much as 18 degrees Fahrenheit hotter than the rural hinterland. To counter this phenomenon, streets and sidewalks are being made more porous, thousands of urban trees are being planted, and roofs are being transformed into green, vegetated coverings. According to Le Parisien, a national newspaper, the temperature can differ 90 degrees F between an asphalt-topped roof and a green roof.

In Britain, railway engineers were painting iron train tracks white to reduce temperatures by 10-15 degrees F and minimize buckling. 

Circling back to climate change, Scotland set a target of 100 percent renewable electricity by 2020; they hit 97 percent. Wind generators contribute the major component of this renewable power, 66 percent of it from offshore wind farms. Although wind towers dot the Scottish countryside, careful siting prevents view corridors or protruding above ridgelines. Perhaps because of Scotland’s long history of civic involvement, the Scots have done better than the French in taking aesthetics into account when locating wind turbines. 

Scotland is finalizing a development formula by which local communities will get a percentage of the returns from wind generators and other renewables for education, health, and affordable housing budgets. One sees almost as many solar panels in Scotland as in Southern California, despite their far north latitude. Ocean current, tidal, and bio waste also factor into their clean energy mix


The Lompoc Strauss Wind Farm

Santa Barbara Is Well on the Way to 100 Percent Renewable Electricity

A small group of us had the privilege of recently touring the Strauss Wind Energy Project in Lompoc while it is under construction. It is the first and only wind project permitted anywhere along the California coast. From the first earlier permitted version of 65 generators, it has been scaled back to 27 machines, yet with the capacity to produce 100 megawatts of electricity.

Reducing the number of turbines has significant environmental and economic benefits. Major advances in “wind” technology during the past 10-15 years have boosted the output possible for a single generator. Each Strauss platform is rated at 3.8 megawatts, the largest land-based turbine available in the U.S. Blades are 227 feet long, the towers 492 feet tall. Scheduled completion date is December this year. Once operational, project will produce the electricity to power 45 thousand houses. For the next 30 years, it will keep six million metric tons of CO2 from entering the atmosphere and warming the planet. This is the equivalent of not driving 16 billion miles. In addition, it will infuse $40 million into Santa Barbara’s tax coffers.

The next wind project along the California coast will likely be offshore, either in the ocean off Morro Bay or off the coast of Humboldt. Both zones have received federal and state approval and are being readied for bulk permitting. The Biden administration recently approved a Massachusetts plan for the nation’s first commercial-scale offshore wind farm. A dozen other East Coast offshore wind projects are now under federal review. Unlike the East Coast, California faces the logistical challenges posed by a deep ocean floor. Evolving technologies, developed mostly in Europe, now make wind generators on floating platforms feasible, as well as even larger ones than land-based units. There is a wind farm with 6-megawatt turbines operating in the North Sea. There is also a 14-megawatt turbine that has been successfully producing for two years in Rotterdam Port.

Santa Barbara has set a goal of 100 percent renewable electricity by 2030. The adoption of community choice energy programs in the Tri-Counties, an initiative advocated and led by the Community Environmental Council, now has 1.4 million households getting at least 50 percent of their electricity from renewables, and many as much as 100 percent. All will be getting to the 100 percent goal by the end of this decade. The Strauss wind farm, when it comes online, will be a big component of local clean energy production.

Wind energy is an ideal complement to solar energy because winds tend to be strongest in the evening and at night. The distributed photovoltaic panels on buildings throughout the County together with the 40-megawatt Cuyama solar farm and the 100-megawatt Strauss wind farm will produce about two-thirds of the electricity Santa Barbara consumes. The county is well on the way to meeting its 2030 goal.